Predicting trait regulators by identifying co-localization of DNA binding and GWAS variants in regulatory regions

Quon, G., Feiz, S., Marbach, D., Claussnitzer, M. & Kellis, M. Predicting trait regulators by identifying co-localization of DNA binding and GWAS variants in regulatory regions. (bioRxiv, 2018).

Abstract

Genomic regions associated with complex traits and diseases are primarily located in non-coding regions of the genome and have unknown mechanism of action. A critical step to understanding the genetics of complex traits is to fine-map each associated locus; that is, to find the causal variant(s) that underlie genetic associations with a trait. Fine-mapping approaches are currently focused on identifying genomic annotations, such as transcription factor binding sites, which are enriched in direct overlap with candidate causal variants. We introduce CONVERGE, the first computational tool to search for co-localization of GWAS causal variants with transcription factor binding sites in the same regulatory regions, without requiring direct overlap. As a proof of principle, we demonstrate that CONVERGE is able to identify five novel regulators of type 2 diabetes which subsequently validated in knockdown experiments in pancreatic beta cells, while existing fine-mapping methods were unable to find any statistically significant regulators. CONVERGE also recovers more established regulators for total cholesterol compared to other fine-mapping methods. CONVERGE is therefore unique and complementary to existing fine-mapping methods and is useful for exploring the regulatory architecture of complex traits.

Last updated on 06/29/2023